Cambiafiltri autopulente a flusso continuo

Con l'innovativo cambiafiltri continuo CleanChanger ${ }^{\ominus}$ abbiamo scritto una nuova e importante pagina nella storia della filtrazione a ciclo automatico. La sequenza di autopulizia è totalmente controllata da PLC equipaggiato con un pannello touch-screen, per cui il cambiafiltri è in grado di lavorare non presidiato e senza interruzioni. Abbiamo sviluppato un sistema di pulizia in contro lavaggio delle reti filtranti ad alta efficienza che permette di ottenere fino a 300 cicli con il massimo rendimento ed economicità di utilizzo. Un software di controllo estremamente intuitivo consente un utilizzo tanto semplice quanto flessibile del cambiafiltri.
A fine ciclo e con l'estrusore sempre alla massima portata è possibile la sostituzione degli elementi filtranti mediante l'estrazione totalmente automatizzata dei breaker plates. CleanChanger ${ }^{\ominus}$, offrendo una perfetta continuità di flusso, permette una integrazione ottimale in qualsiasi tipo di linea di estrusione, grazie alla sua compattezza e allo sviluppo ingegneristico. Questo si traduce nella possibilità di realizzare progetti altamente personalizzati e ottimizzati in vere e proprie soluzioni Plug\&Play.

CONSIGLIATO

PER IMPIANTI
DI ESTRUSIONE DI:

- Riciclaggio (qualitativo e intensivo)
- Compound
- Lastra piana e alveolare
- Tubi e profili
- Film tubolari o piani
- Mono e multi-filamenti
- Masterbatch
- Adesivi e colle

Massa filtrante	Grandezze di flussaggio			Dimensioni reti filtranti			Dimensioni generali						Potenza zone di riscaldamento		BDO equival.	BDOx2 equival.
	Portata	Superficie filtrante netta tot.	Superficie nominale tot.	Rete	Sede rete	Prof. Sede rete						Peso				
$\varnothing(\mathrm{mm})$	(kg/h)	(cm^{2})	$\left(\mathrm{cm}^{2}\right)$	$\varnothing(\mathrm{mm})$	\varnothing (mm)	(mm)	A (mm)	B (mm)	C (mm)	D (mm)	D1 (mm)	(kg)	R1, R2	R3, R4	$\varnothing(\mathrm{mm})$	\varnothing (mm)
60	080-450	41	85	65,8	66	3	915	472	686	468	297	430	W2000 Up + W2000 Down	W2000 Up + W2000 Down	104	73
80	200-750	82	151	89,8	90	3	1038	644	723	586	325	660	$\begin{aligned} & \text { W2500 Up + } \\ & \text { W2500 Down } \end{aligned}$	$\begin{aligned} & \text { W2500 Up + } \\ & \text { W2500 Down } \end{aligned}$	139	98
100	400-1050	112	236	109,8	110	3	1142	671	776	650	373	1015	$\begin{aligned} & \text { W3800 Up + } \\ & \text { W3800 Down } \end{aligned}$	$\begin{aligned} & \text { W3800 Up + } \\ & \text { W3800 Down } \end{aligned}$	173	122
120	600-1200	161	339	129,8	130	3	1204	792	876	685	436	1415	W6000 Up + W6000 Down	$\begin{aligned} & \text { W6000 Up + } \\ & \text { W6000 Down } \end{aligned}$	208	147
140	750-1500	219	462	149,8	150	3	1255	749	921	709	447	1700	$\begin{aligned} & \text { W7000 Up + } \\ & \text { W7000 Down } \end{aligned}$	$\begin{aligned} & \text { W7000 Up + } \\ & \text { W7000 Down } \end{aligned}$	242	171
160	1000-2500	287	603	169,8	170	3					SU RICHIES	STA			277	196
180	1200-3000	363	763	189,8	190	3	1431	939	1077	770,5	513	2400	W7200 Up + W7200 Down	$\begin{aligned} & \text { W7200 Up + } \\ & \text { W7200 Down } \end{aligned}$	312	220
200	1500-4000	452	942	209,8	210	3									346	245
250	2000-5000	701	1473	261,8	262	3					SU RICHIES	STA			433	306

TC1, TC2, TC3, TC4: Termocoppie

